Mitigation of Salinity Stress Effects in Tomatoa (Lycopersicon esculentum Mill. ) by Using Calcium Chloride

Mitigasi Efek Stres Salinitas pada Tomat (Lycopersicon esculentum Mill. ) dengan Menggunakan Kalsium Klorida

  • (1) * Fadhil Alaywe Atiyah Al-Rubaiee               

    (*) Corresponding Author


       In the world, salinity has become an increasing danger for agricultural production. A factorial pot experiment using a completely randomized design (CRD) was conducted in the present research, aimed to look at how growth, yield parameters, and biochemical contents were influenced by the exogenous application of calcium chloride (CaCl2, 0, 5, and 10 mM) of tomato exposed to salt stress (NaCl, 0, 25, and 75 mM), Growth was slowed and Both the sodium percentage and proline content increased under salt stress. However, the growth, yield, and biochemical content characteristics were improved by the application of Ca, enhanced plant height, dry weight of the shoots and roots, the number of fruits per plant, fruit weight, the percentage of nitrogen, calcium, magnesium, phosphorus, potassium, relative water content (RWC), and increased proline content,  moreover a significant reduction in the sodium percentages, when compared to the control. Lastly, exogenous Ca use improves resistance to salt stress.  Moreover, the use of 10 mM CaCl2 caused the beneficial effects of Ca, which has been suggested to enhance tomato performance in salinized conditions.


Al-Aysh, F.; Al-Serhan,M.;Adnan,A.S.;Mohammad,A.N., and Kutma , H. (2012). Study of genetic parameters and character interrelationship of yield and some yield components in tomato (Solanum lycopersicum L.). Intl J Genet. 2(2):29–33.

Metwally, R.A. ; Abdelhameed, R.E.; Soliman, S.A.and Al-Badwy, A.H. (2022). Potential use of beneficial fungal microorganisms and C-phycocyanin extract for enhancing seed germination, seedling growth and biochemical traits of Solanum lycopersicum L. BMC Microbiol 22:108.

FAO (2020). (Food and Agriculture Organization of the United Nations). FAOSTAT Database. FAO, Rome

Ngezahayo, F. N. ; Bizindavyi, E. and Mbonihankuye, C. (2019). Short communication: Agro-morphological diversity among four tomato cultivars in western Burundi. Biodiversitas 20:436–441.

Tanveer, K.; Gilani, S.; Hussain, Z.; Ishaq, R.; Adeel, M.and Ilyas,N. (2020). Effect of salt stress on tomato plant and the role of calcium. J. Plant Nutr, 43(1):28–35.

Cuartero ,J. and Fernandez, M.R. (1999). Tomato and salinity. Scientia Hort. 78: 83-125 .

Parinith, G.R.; Lakshmi, S.; Renganayaki, P.R. and Nakkeeran, S.(2022). Alleviation of salinity stress via seed priming in tomato (Solanum lycopersicum) with Bacillus paralicheniformis . The Pharma Innovation Journal 2022; 11(8): 201-206.

Evelin, H.; Devi, T.S.; Gupta, S. and Kapoor, R. (2019) .Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci. , 10:470 .

Gupta, S. ;Schillaci, M.;Walker, R.; Smith, P.M.; Watt, M.and Roessner, U. (2020). Alleviation of salinity stress in Plants by endophytic plant-fungal symbiosis:Current knowledge, perspectives, and future directions. Plant Soil ,461:219–244.

Soliman, S.A.; Khaleil, M.M. and Metwally, R.A. (2022). Evaluation of the antifungal activity of Bacillus amyloliquefaciens and B. velezensis and characterization of the bioactive secondary metabolites produced against plant pathogenic fungi. Biology 11:1390.

Alharby , H. F. ( 2021 ). Using some growth stimuli, a comparative study of salt tolerance in two tomatoes cultivars and a related wild line with special reference to superoxide dismutases and related micronutrients , Saudi Journal of Biological Sciences 28 (2021) 6133–6144.

Gama,P.B.S.; nanaga,S. ;Tanaka,K. and Nakazawa, R. (2007). ''Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress'', African Journal of Biotechnology. 6(2), pp. 79-88.

Al-Rubaiee , F.A.A. (2017 ). Alleviation Of Salinity Stress on Growth and Some Physiological Traits Of Broad bean plant ( Vicia faba L. ) By Seeds Soaking With Salicylic acid . , Journal of the College of Basic Education, 23(98): 99-112 .

Al-Rubaiee, F.A.A. and Al–Saedi,A.J.H.(2023). Effect of grains soaking with ascorbic acid on the growth and yield of wheat (Triticum aestivum L.) exposed to salinity stress. AIP Conference Proceedings,2414(1):020016.

Jamil,M.; Rehman,S. and Rha, E.S. (2007). ''Salinity effect on plant growth, ps11 photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.)'', Pakistan Journal of Botany. 39 (3); pp. 753-760.

Kaymakanova,M. and Stoeva, N. (2008). ''Physiological reaction of bean plants (Phaseolus vulgares L.) to salinity stress'', General and Applied Plant Physiology. 34(3-4), pp. 177-188.

Khosravinejad, F. ; Heydari,R. and Farboodnia, T. (2009). ''Effect of salinity on organic solutes contents in barley'',Pakistan Journal of Biological Sciences. 12(2), pp.158-162.

Al-Rubaiee,F.A.A.(2023).Effect of Kinetin Pretreatment on Some Macroelements in SaltGrown Bean (Vicia Faba L.) Plants . World of Science: Journal on Modern Research Methodologies ,2(10):86- 94.

Mittler, R. (2002). ''Oxidative stress, antioxidants and stress tolerance'', Trends in Plant Science. 7, 405- 410.

Khan, M.H. ; and Panda, S.K. (2008). ''Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress''. Acta Physiologea Plantarum. 30, 91-89.

Mandhania, S. ; Madan, S. and Sawhney, V. (2006). ''Antioxidant defense mechanism under salt stress in wheat seedlings'', Biologica Plantarum. 227, 227-231.

Barhoumi, Z, Djebali W, Chaibi W, Abdelly, and Ch.Smaoui A. (2007) ''Salt impact on photosynthesis and ultrastructure of Aelurous littoralis'', Journal of Plant Research. (20), 120: 529-537.

Mansour, M.M.; Salama, F.Z.; Ali, M. and Hadid, A. (2005). ''Cell and plant responses to NaCl in Zea Mays L. cultivars differing in salt tolerance,'' General and Applied Plant Physiology. 31(1-2), 29-41.

Singh, J. Sastry, E.V.D., and Singh, V. (2012) . Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiology and Molecular Biology of Plants, 18(1), 45–50.

Zhang, P. ; Senge, M. and Dai, Y. (2017). Effects of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Communications in soil science and plant analysis, 48(6), 624–634.

Roy, P.R.; Tahjib-Ul-Arif, M.; Polash, M.A.S.; Hossen, M.Z. and Hossain, M.A.(2019).Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiol. Mol. Biol. Plants. 253, 611–624. [CrossRef] [PubMed].

Islam, M.M.; Ye, W.; Matsushima, D.; Rhaman, M.S.; Munemasa, S.; Okuma, E.; Nakamura, Y.; Biswas, M.S.; Mano, J. and Murata, Y.(2019). Reactive carbonyl species function as signal mediators downstream of H2O2 production and regulate [Ca2+]cyt elevation in ABA signal pathway in Arabidopsis guard cells. Plant Cell Physiol., 60, 1146–1159. [CrossRef] [PubMed].

Sharma,D.; Jamra, G.; Singh, U.M.; Sood, S. and Kumar, A.(2017). Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet (Eleusine coracana) for Devising Strategies of Enrichment of Food Crops. Front. Plant Sci., 7, 2028. [CrossRef] [PubMed].

Manaa, A.; Faurobert, M.; Valot, B.; Bouchet, J.-P.; Grasselly, D.and Causse, M.(2013).Effect of salinity and calcium on tomato fruit proteome. OMICS , 17, 338–352. [CrossRef].

Tanveer, K.; Gilani, S.; Hussain, Z.; Ishaq, R.; Adeel, M.and Ilyas, N.(2020). Effect of salt stress on tomato plant and the role of calcium. J. Plant Nutr. , 43, 28–35. [CrossRef].

Henry, E.E.; Sossa, E.; Noumavo, A.P.; Amadji, G.; Baba-Moussa, L. and Gandonou, C.B.(2021). Ions and Organic Solutes as Implicated in the Ameliorative Effect of Exogenous Application of Calcium on Salt Stressed Tomato (Lycopersicon esculentum Mill.)Plants. Int. J. Plant Soil Sci., 33, 200–212. [CrossRef].

Ahmad, P.; Abd-Allah, E.F; Alyemeni, M.N.; Wijaya, L.; Alam, P.; Bhardwaj, R. and Siddique, K.H.M. (2018). Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate– glutathione cycle and secondary metabolites. Scientific Reports , 8 (1), 13515.

Mukhtar, I.; Shahid, M.A.; Khan, M.W.; Balal, R.M.; Iqbal, M.M.; Naz, T.; Zubair, M.and Ali, H.H. (2016). Improving salinity tolerance in chili by exogenous application of calcium and sulphur. Soil and Environment, 35 (1), 56–64.

Bonilla, I.; El-Hamdaoui, A. and Bolanos,L. (2004). Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant and Soil., 267: 97-107.

Daowei, Z. and Moxin,X.(2010).Specific ion effects on the seed germination of sunflower. J. Plant Nutr., 33: 255-266.

Yamasaki, S.and Dillenburg, L.R.( 1999). Measurements of leaf relative water content in Araucaria angustifolia. Rev. Bras. Fisiol. Veg., 11, 69–75.

Rahman, A.; Nahar, K.; Hasanuzzaman, M.and Fujita, M.(2016). Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front. Plant Sci. 2016, 7, 609.[CrossRef].

Chapman,H.D. and Pratt, F.P. (1961). Methods of analysis for soils, plants, and water. Univ. Calif. Div. Agric. ci.,160-170.

Matt, K.J. (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci.,109:214-220.

Page,A.L.; Miller,R.H. and Kenney , D.R. (1982). Methods of Soil Analysis, 2nd ed., Agron. 9, Madison, Wisconsin.

Wimberly, N.W. (1968).The Analysis of Agriculture Material. MAFF. Tech. Bull. London .

Bates, L.S.; Waldren, R.P. and Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.

SAS.(2012).Statistical Analysis System, User's Guide. Statistical. Version 9.1st ed.SAS. Inst. Inc. Cary. N.C. USA.

Al-Rubaiee , F.A.A. (2023). Effect of NaCl and seed soaking in kinetin on growth and yield parameters of Vicia faba L., CAJMNS Central Asian Journal of Medical and Natural Sciences , 4 (06), 955-965.

Rahman, A.; Nahar, K.; Hasanuzzaman, M. and Fujita, M.(2016). Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front. Plant Sci., 7, 609. [CrossRef].

Sun, K.; Hunt, K. and Hauser, B.A.(2004). Ovule abortion in Arabidopsis triggered by stress. Plant Physiol., 135, 2358–2367. [CrossRef].

Roy, P.R.; Tahjib-Ul-Arif, M.; Polash, M.A.S.; Hossen, M.Z.and Hossain, M.A.(2019).Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiol. Mol. Biol. Plants., 253, 611–624. [CrossRef] [PubMed].

Parvin, K.; Ahamed, K.U.; Islam, M.M.; Haque, M.N.; Hore, P.K.; Siddik, M.A. and Roy, I.(2015). Reproductive behavior of tomato plant under saline condition with exogenous application of calcium. Mid. East J. Sci. Res., 23, 2920–2926. [CrossRef].

Ahmad, P.; Sarwat, M.; Bhat, N.A.; Wani, M.R.; Kazi, A.G. and Tran, L.S.P.(2015). Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE , 10, 0114571. [CrossRef].

Otie, V.; Udo, I.; Shao, Y.; Itam, M.O.; Okamoto, H.; An, P.and Eneji, E.A. (2021). Salinity Effects on Morpho-Physiological and Yield Traits of Soybean Glycine max L. as Mediated by Foliar Spray with Brassinolide. Plants, 10, 541. [CrossRef].

Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Hussan, M.U. and Sarwar, M.I.(2019). A review: Impact of salinity on plant growth. Nat. Sci., 17, 34–40.

Agurla, S.; Gahir, S.; Munemasa, S.; Murata, Y.and Raghavendra, A.S. (2018). Mechanism of stomatal closure in plants exposed to drought and cold stress. In Survival Strategies in Extreme Cold and Desiccation; Iwaya-Inoue, M., Ed.; Springer: Singapore, pp. 215–232.

Gu, M.F.; Li, N.; Long, X.H.; Brestic, M.; Shao, H.B.; Li, J.B. and Mbraki, S.(2016).Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant Soil Environ. , 62, 314–320. [CrossRef].

De Leon, T.B.; Linscombe, S.; Gregorio, G.and Subudhi, P.K. (2015).Genetic variation in Southern USA rice genotypes for seedling salinity olerance. Front. Plant Sci. , 6, 374. [CrossRef].

Epstein , E. (1972 ). Mineral nutrition of plant : Principles and perspective . John Wiley and Sons New York.

Al-Rahmani , H.F.K. ; Al-Hadithi , T.R. and Al-Delemee , H.N. (2001). Calcium and Salinity tolerance of barley . J. Diala , 10:27-40.

Iqbal, N.; Umar, S. and Khan, N.A. (2015). Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J. Plant Physiol., 178, 84–91. [CrossRef] [PubMed].

Verslues, P.E. and Sharma, S.(2010). Proline Metabolism and Its Implications for Plant-Environment Interaction. The Arabidopsis Book, 8, e014.0. [CrossRef].

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
How to Cite
Al-Rubaiee , F. A. A. (2024). Mitigation of Salinity Stress Effects in Tomatoa (Lycopersicon esculentum Mill. ) by Using Calcium Chloride. Nabatia, 12(1), 26-42. Retrieved from